

Crowdsourcing – Using Social Media for Rapid Damage Assessment

Joachim Fohringer & Doris Dransch (GFZ) André Dittrich & Christian Lucas (KIT)

CENTER FOR DISASTER MANAGEMENT AND RISK REDUCTION TECHNOLOGY

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Data Source

social media (implemented)

Flickr

Twitter

- social media (potential)
 - google+, instagram, ...
 - text and image platforms with an api
- background information
 - OSM (maps)
 - GeoNames (gazetteer)
- verification
 - USGS, GEOFON

Data Input

- images from Twitter and Flickr
 on demand collection of batch data (Flickr)
- tweets filtered by domain specific search terms
 infrastructure: power, outage, interruption, downtime → global scale
 tweets filtered by location (bounding-box)
 - \blacksquare number varies strongly for each region \rightarrow local scale
- tweets filtered by time
- generally
 - **uncertain** in quality/trustworthiness and quantity
 - **temporally** continuous
 - hazard types
 - Earthquake, Flood, Volcano, Tsunami, Cyclone, Hail/Thunder, Blizzard, Tornado, Drought/Heat wave

flickr

Output

operational

- intensity map (shape, raster, vector) \rightarrow within minutes
- georeferenced Photos (shape, image) \rightarrow within seconds
- general information on event & related tweets (json, shape) \rightarrow within seconds
- e-mail alert (e-mail) \rightarrow within minutes

Output Data

- relevant classified data
- make information accessible for interpretation by domain experts

intended (future)

- automatic classified tweet content as tables (shape, csv) \rightarrow within minutes
 - damage reports, felt intensity, cries for help

Project Links

established

- rapid flood event analysis in Germany (Kai Schröter)
 - **provision of photos for derivation of water depths** \rightarrow internal
- post-disaster damage mapping (Silke Eggert)
 - \blacksquare reports to estimate a impact and magnitude \rightarrow internal
- internal (Dittrich, Fohringer, Lucas)
 - task assignment, data sharing, mutual help during FDAs, etc.

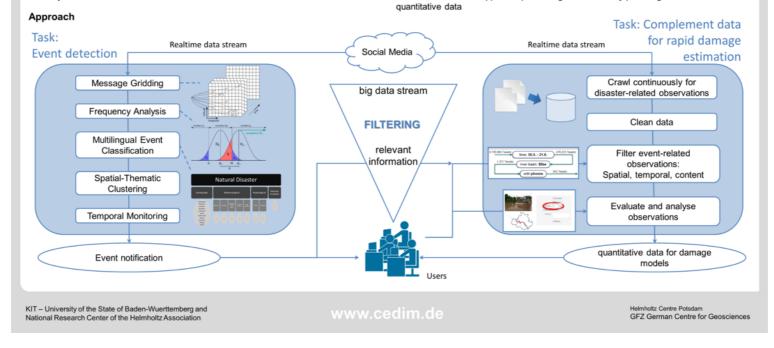
potential

- Ioss assessment for earthquakes (James Daniell)
 - photos of damaged infrastructure for intensity estimation \rightarrow internal
- transportation interruptions (Tina Bessel)
 - eyewitness observations of disrupted infrastructure → internal
- James Daniell (Armand Vervaek, earthquake-report.com)
 - TO: E-Mail alert for earthquakes \rightarrow internal + limited external
 - FROM: pre-alerts/alerts based on IP-localization AND experience reports
- any CEDIM Member \rightarrow "subscription" to e-mail alert for specific disaster type

André Dittrich **Christian Lucas**

Joachim Fohringer **Doris Dransch**

Crowdsourcing – Using Social Media for rapid damage assessment


André Dittrich (KIT), Joachim Fohringer (GFZ), Christian Lucas (KIT), Doris Dransch (GFZ), Stefan Hinz (KIT)

Motivation

• During a natural disaster, latest information are crucial to enable a fast response of local authorities and disaster relief organization · Exploiting social media can significantly complement information given by modern sensors

Challenges · Few relevant observations in large data stream · Heterogeneous data · Data often only temporarily available

Goal · Identify relevant information from observations disseminated via social media Result · Effective multilevel filtering of observations from social media enhances detection of disaster events and supports rapid damage estimation by providing additional

