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Motivation

® ICT-infrastructures and

@ Renewable Energy Sources
(RES).

Eower d_lstrlbutlon system component
Increasing dependencies on failures
Cyber RES
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Advanced Metering Infrastructures and Smart meters allow fine
grained power distribution management strategies.
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Find suitable power distribution strategies in times of power

shortage by exploiting the advantages of an advanced metering

Smart Grids & Infrastructures

Quantities

Disruptions of an infrastructure x;, caused by power shortage, may
lead to negative conseqguences for the population that can be
measured by Its criticality c¢; see [OMS2018].

An Infrastructure x; may possess

@ Process Flexibility or

@ Coping Capacities

that allow to specify a power demand
interval [P} min Pbmax], Where Py .
IS the power demand for normal process
mode and P} i, the power demand for

Health

@ Current work aims at increasing the performance of the EA
through an improved gene model and an extension to a memetic
algorithm.

anrastructure and smart meters. § at least running some essential Electricity & ICT
subprocesses.
Distribution Heuristics
Setting Similarity Fairness
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Criticality Based Optimal Power Flow applied to the IEEE 33 Bus System
Scenario: 75% coverage of default power demand
Supply Index Global Maximum of SI
Let Finding a global maximum M of ST within a truncated
SI = )ic;Ci qi(SP;), power demand domain, see Fig-1, can be used to
be a supply index, where ¢; = S "L is the weighted assess the quality of fair power distributions, see
jer € ™ Fig-2
fr:'t'ca“t{_tandf% a celrtaln inear function measuring % The dual-simplex algorithm applied to our test case:
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generator - demand and criticality data as in Fig-4,5. power shortage constraint (red)
Evolutionary Algorithms and Optimal Power Flow
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optimally distributed (blue) start solutions. The value of SI EA ImproveS ad Set Of SOIUt'OnS by rep|ICatIng _
depicted here always refers to the fittest solution in the set : : : : Suppliable Power | = l
the mechanisms of Dbiological evolution .. e e =
Quality of Power Supply vs. Criticalit v . . . . s S IR IR . R . A o A ¢ ]
oty .z .w (heredity, mutation, and survival of the fittest). = KN | efl
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busses the investigated network consists of times to Obtaln SUﬁlCleﬂtly gOOd SOlUtlonS_ power PL. . and suppliablé bower SP, for the busses Dower dIZmand (tob) and 75% (bcg);ttom).
Next Steps
® More detailed and larger use cases, e.g. urban power distribution @ Extension of the power grid models with photovoltaics and
grids including critical infrastructure models are In preparation. battery storage for transient simulation [KCKH2017].
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